If it's not what You are looking for type in the equation solver your own equation and let us solve it.
h^2-86=0
a = 1; b = 0; c = -86;
Δ = b2-4ac
Δ = 02-4·1·(-86)
Δ = 344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{344}=\sqrt{4*86}=\sqrt{4}*\sqrt{86}=2\sqrt{86}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{86}}{2*1}=\frac{0-2\sqrt{86}}{2} =-\frac{2\sqrt{86}}{2} =-\sqrt{86} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{86}}{2*1}=\frac{0+2\sqrt{86}}{2} =\frac{2\sqrt{86}}{2} =\sqrt{86} $
| 3-4x+2(5.5)=9 | | 2(x-3)+12=-3(x-2) | | 3x^2+13+1=0 | | −5x^2−530=90x | | 6(x-7)=-6-2(8x-4) | | p^2-74=-74 | | -3m+12-4m=-7m=14 | | 2r+5=-3 | | 5y-3y=48 | | 4(3b-1)=-5(b-6) | | 10/8w=15 | | x^2+(4x/3)^2=25 | | 2x+6=8+4x+10 | | 6(3m-6)=-6(6+4m)+6m | | 4x-3x=3x-3x-96 | | 3+4(-2k+7)=-(2k+5) | | 3x+2x+10=x-5-9 | | -36x=4x | | 8x+9(-9)=-9 | | 30+8b=470 | | u^2-86=-37 | | x/5+2=3 | | 4(4+5r)-6r=2(6r+1) | | x2−15=x5 | | 8(u+2)=16 | | 3(k-5)=3(-2k-5) | | x/4=10=34 | | -6.8+3y+2.4=4.3–3y | | 5x+(-5)=20 | | 3^4x+5=(1/3)^x+10 | | q+17/9=5 | | 6b+2(b=8) |